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Transfer Function Approximations for a
New Class of Band~ass Distributed

Network S&uctures
M. E. MOKARI-BOLHASSAN, MEMBER,

Abstract—Characteristic functions for a new class of prototype

bandpass transmission-line structures have been derived for both the
maximally flat and equiripple or Chebyshev characteristics. The

class of bandpass distributed structures considered in this paper
consists of commensurate transmission lines with constraints in
the form of a shunt open-circuited stub and/or a series slhort-circuited
stub. The gain-bandwidth restrictions imposed by the reactance

constraints have been derived and some explicit results are presented
for the synthesis of this class of bandpass transmission-line networks.

Results presented in this paper are directly applicable to the design of

broad-band microwave passive and active networks. In particular, the

results are applied to the design of broad-band matching networks for

octave-band GaAs FET amplifiers.

I. INTRODUCTION

r BOTH passive and active microwave circuit designs,

we often encounter the problem of broad-band matching

of complex loads with prescribed reactive constraints.

Specific examples include the broad-band matching of

microwave antennas, the design of broad-band bipolar and

FET amplifiers [1]-[3], and the broad-band coupling to

high-Q resonant loads and circulators [4], [5]. In order to be

able to absorb the reactive part of the load admittances,

different circuit configuration; are often needed. The general

distributed network configuration shown in Fig. 1 has great

flexibility and is useful for a number of broad-band match-

ing applications especially for the design of broad-band

bipolar and GaAs FET amplifiers.

Based on the circuit configuration shown in Fig. 1,

characteristic functions for a new class of prototype

bandpass transmission-line structures have been derived in

this paper for both the maximally flat and equiripple or

Chebyshev characteristics. The new class of prc~totype char-

acteristics developed has great flexibility y in adjusting the

number of zeros of transmission at the origin and at infinity

and the commensurate line length is one-eighth the wave-

length at the center of the band. Having a relatively short

transmission-line length and zeros of transmission both at

the origin and infinit~ makes the new prototype useful for

broad-band matching of complex impedances since the

structure will contain both open-circuited and short-

circuited stubs.
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Fig. 1. A prototype of bandpass distributed structures,

The reactance constraints are represented in the form ofa

shunt open-circuited stub and/or a series short-circuited

stub. The gain-bandwidth restrictions imposed by these

reactance constraints have been derived and some explicit

results for the synthesis of this class of bandpass

transmission-line networks are presented in this paper. For

octave-band applications, results for broad-band designs

using five different circuit configurations are tabulated in

terms of the gain factor K and the ripple parameter a

Gain-bandwidth limitations are obtained for two different

load constraints encountered in the design of the output

matching networks for microwave chip and packaged FET

amplifiers. These results are compared with the optimal

limitations obtained for the ideal gain characteristics.

A characteristic function realizable in the form of Fig. 1 is

given by[6]-[11]

KQ2”(1 + Qzy
1s,21’ = ~n+m+r(Q2) <1 (1)

which has m zeros of transmission at Cl = O, r zeros of

transmission at !2 = co, and n cascaded lines. In (1), K is the

gain parameter and P. +~+, is a polynomial of order

n + m + r in Clz. If we use the transformation,

!2=tan9

X=(x coso (2)

the gain function (1) reduces to

IS1212= ,,:M+J.Y2)
1+(5-X’)mxz’

(3)

where the zeros at the origin are mapped to .x = a and the
zeros at infinity are mapped to x = O. It is easy in general to

make an approximation to (3) in the equiripple or Cheby-

shev sense if r = O, but the solution is now known where r or

m is not zero.

The frequency response of (3) repeats itself after each n/2

radians and there are no clear cutoff frequency points as can
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Fig. 2. The characteristic response of the prototype corresponding to (3).
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Fig. 3. The characteristic response of the prototype corresponding to (6).

be seen from Fig. 2. But if we use the transformations given

in (4), we obtain a more standard form of characteristics

versus x as is shown in Fig. 3. The characteristics repeat after

each n radians. The new set of transformations are

or

Cl= tan 0/2

X=ucose

IX-X
Q2=—

a+x”

Substituting (5) in (1), the results are

‘(=3K+
P

(–)

a—x
n+m+r

U+x

K(2a)’@ – X)m(U + x~
.

(1(a+ Xy+m+rf’n+r+m~

K(2uy(a – X)m(u + x)”—

Q.+nt+r(cz– x)

. L+,(x)<
1+(a :x)q~ + Xy

The return loss of the bandpass structure of Fig.

given by

.+m+r(x)‘“p’’=l+(a:x)”(M+xy

(4)

(5)

(6)

1, P~P, is

(7)

where the zeros at the origin are mapped to x = a and the

zeros at infinity are mapped to x = – u. Now even for the

Chebyshev case we will be able to approximate (7) if

n + m + r is an even number. It will be shown subsequently

that to make (7) maximally flat or equiripple n + m + r must

be even. Note that the commensurate transmission lines will

be one-eighth wavelength long at (FH + F~)/2, where F~

and F ~ are, respectively, the high and low end of the

frequency band.

II. BUTTERWORTH APPROXIMATION

We shall rewrite (7) as

K “ P~P = 1 + (10””/10 – 1)

c n+m+rx ‘+’”+” + cn+m+,_lx”+’’’l’-l + ““”
(8)

(CX- X)m(fx + XT “

Although the function does seem to be even, the gain

function will be even if n + m + r is even. To make (8)

maximally flat around x = ~ we need to set

i3iPBF = o

~ ‘ ‘=0’1’”””’‘+m+r-l (9)

at x = /?, center of the passband. This leads to

A is determined from band-edge requirements; i.e., for P = O

and band edge x = f 1 (Fig. 3) if we require that

10 log P~P = am dB at x = + 1 the result will be

AZ = (cl – l)m(cl + ly. (11)

The attenuation on the other band edge maybe determined

from (10). Transforming (10) back to the Q domain by using

l–flz

‘= U1+Q2

we obtain

Kf22”(l + S22~
1s1212= *2m(~ + *2)n + ~z(~ - Q2y+m+r

where

(x”(’l – l)m(u + 1)’~z = ~z
7+, “

III. CHEBYSHEV APPROXIMATION

We may rewrite (6) as

ISlzlz = ~ + ~$F(x)

(12)

(13)

(14)

(15)

It is easy to show that the response will be equiripple

between x = a and x = b if [6]-[10]

F(x) = 1 + cos (n@ + mcl + r<2) (16)
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where three stubs; two zeros of transmission at the origin and one
2x–(a+b)

Cos ~ = (17a)
zero of transmission at infinity), the characteristic function is

a—b given by

x(a + b – 2M) + a(a + b) – 2ab
Cos ~1 = – (17b) 1s,2]2 =

K81X3C?4(1+ Qz)

(a - b)(x - u) co + C1Q2 + CZQ4 + C3L26 -1- c4a3
(24)

x(a + b + 2a) - a(a + b) – 2.ab where
Cos (2 =

(a - b)(x + W)
–. (17C)

CO = e~[~~ (4a6 – 8U4 + 4U2) + 4M7 – 8cz5+ 4U3]
In order for ISI ~ 12to be an even rational function in fi2,

Cl = &:[~-(– 16ct6 + 8U4 – 8(x2) – 16u7 + 16u5]
n + m + r must be an even number. To show this let

x = a = +1 and x = b = –1, then (17) reduces to C2 = 8U3 + c;[~~ (24u6 + 4ct4 + 4U2)

and
cos@=x=ucose (18) + 24ct7 – 121X5+ 4U3]

ax—l C3 = 8U3 + s~[~~(– 16u6) – 16u7 + 8U5 + 8a3]
Cos <1 =—

u—x
C4 = &;[/= (4ct6 – 4ct4) + 4ct7 – 4a5].

‘%X+l
Cos (2 =— (19) (25)

U+x”

substituting this in (16) leads to This function has the required form and may be synthesized

to yield element values for different K and El.
F(x) = 1 + cos (no) cos (mtl + njz) For special cases where n is even and m = r, (16) maybe

where
– sin @ sin (nzt ~ -+ rtz) (20) ‘ritten ‘n ‘he ‘O1lOwing ‘orm

cos (no) = TJx)

and

sin (no) = <’1 – X2 Q.(x)

(21)
IS,212 =

K

II

(26)

(22) 1 + &2 COS2 ~~+m<

where T.(x) is a Chebyshev polynomial of degree n and Q.(x) where

is a rational polynomial of degree FZ [6]–[10]. To show that

(19) is rational we proceed as follows:

J

a2-1
Cosc=x — (27)

lx2 — X2
cos (m~l + r<2) = cos (m{l) cos rL2

(23a) and
E= = 2E~. (28)

+ cos m~ ~ sin r<2 (23b) For this case, let n = Oand m = 1, the characteristic function
is obtained as

cos m~l = 2 cos (m – l)tl cos ~1 – cos (m– 2)C1

(23c)
(29)15,212 = 2Q2 + ,2(y_Q;)(1 - Q2)2

sin m~l = 2 sin (m – 1)~1 cos LI -- sin (m – 2)LI.
which has the required form.

(23d) For n = 2 and m = 1, we have for COS2(++ g)

{@[a2(/H + U)2 + 1.0- 2u(/’ + U)] + f2’[-4M2(/a + (X)2+ 4]

+ f24[6a2(~- + a)2 + 6 + 4~(~- + u)] + f22[-4a2(<~ + IX)2 + 4]

+[ctZ(/= + U)2 + 1 – 2M(J= + ~)1} N
COS2(~ + ?) = ~ (30)._

4!22(1 + Q2)2

It is clear that cos mt ~ and cos r< z are rational functions of and

x. The terms sin m< ~ and sin r< z are multiplications of the

~’ term and a rational function of x (see (23d)).

Substituting these in (16) it is easy to see that the result is a
rational function of x. To make the function even in terms of

.Xand Q, n + m + r has to be constrained to be ~~vennumber.

For n = 1, m = 2, and r = 1 (i.e., one cascaded line and

IS,21’= 1+,2 CO:2(4+L)

4Ka2f22(l + ~z)z—
– 3az~z(l + @)z + &2N (31)
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TABLE I
ELEMENTVALUES FORTHE CHEBYSHEVFUNCTION,

?I=2, ~=1, ~=1, M=2, AND R~=l.OQ

Ripple Parameter 62

K 0.01 0.04 0.09 0. lb 0.25 0.36

‘o I 1.0191 0.6125 0.4695 0.3908 0.3382

z

0.2991

2 0. 3122 0.2$325 0.2585 0.2371 0.2177 0.2002

0.80 Z03 0.1658 0.1042 0.0749 0.0581 0.0472 0.0396

‘o 4 0.5410 0.2258 0.1361 0.0957 0.07330 0.0592

‘L O. 1529 0.1065 0.0870 0.0766 0.0702 0.0659

z
01 1.1443 0.6919 0.5310 0.4414 0.3811 0.3363

‘o 2 0.3606 0.3255 0.2965 0.2705 0.2472 0.2265

0.85 ’03 0.1878 0.1172 0.0840 0.6495 0.0527 0.0442

’04 0.5959 0.2492 0.1505 0.1060 0.0812 0.0656

‘L O. 1746 0.1221 (). 1002 0.0883 0.0811 0.0762

z
01 1.3011 0.7924 0.6082 0.5043 0.4341 0.3819

‘o 2 0.4241 0.3813 0.3449 0.3125 0.2839 0.2588
0.90 ~

-03 0.2156 0.1335 0.0953 0.0734 0.0594 0.0497

‘o 4 0.6614 0.2776 0.1680 0.1184 0.0908 0.0734

‘L 0.2031 0.1431 0.1179 0.1042 0.0957 0.0900

‘o 1 1.5251 0.9365 0.7168 0.’5913 0.5062 0.4434

‘o 2 0.5199 0.4634 0.4140 0.3710 0.3341 0.3025

0.95 Z03 O. 2555 0.1566 0.1109 0.0849 0.0684 0.0571

‘o 4 0.7497 0.3165 0.19J9 0.1354 0.1037 0.0838

‘L 0.2472 0.1762 0.1458 0.1289

z

0.1183 0.1111

01 2.2789 1.3662 1.0165 0.8205 0.6915 0.5987

,, ‘o 2 0.8411 0.7030 0.6004 0.5222 0.4608 0.4114

1.00 zo~ 0.3876 0.2253 0.1545 0.1160 0.0922 0.0763

z
04 1.0502 0.4379 0.2616 0.1823 0.1384 0.1110

R
L 0.4608 0.3205 0.2574 0.2222 0.2002 0.1855

Z02 Z03

$’c2zE2=lRL
the Chebyshev function of (17) for the configuration of Fig.

6. Thesynthesized results arepresented in Table III. Two

other tables are presented for completeness and further

usage. The elements for the Chebyshev function with n = 1,

m = 2, r = 1, and a = 2 are given in Table IV and the

Fig. 4. Circuit realization useful in output matching’ chip FET elements’ values for n = 1, m = 1, r = 2, and a = 2 are given
amplifiers; Chebyshev function with n = 2, w = r = 1, and a = 2. in Table V.

or specifically

1~1212= 8 ~
4KQ2(1 + !22)2

{Q [CY(J=+ U)2 + 1.0- 2U(J= + &)]&z

+ @{[-4a2(~- + a)2 + 4]&2 +4} + 04{[6a2(~= + m)2 + 6 + 4c@- + (x)]&z + 8}

+ Q2{[–4a2(J- + a)’ + 4]82 +4} + [a2(/a + M) + 1.0 – 2(/= + a)]&2}. (32)

This function is synthesized for different K and e and the

configuration given in Fig. 4. The results are tabulated in

Table I. This configuration is useful in output matching chip

FET amplifiers [1]-[3]. For the packaged FET’s the

configurations given in Figs. 5 and 6 are required. To realize

the circuit of Fig. 5, we use the Butterworth functions of (15)

with n = 1, m = 1, and r = 2. The element values are tab-

ulated in Table II. We have chosen n = 2 and m = r = 2 in

IV. GAIN-BANDWIDTH LIMITATIONS

In this section, the gain-bandwidth restrictions are

applied to the reactively constrained loads given in Fig. 7(a)

and (b), which correspond to the output circuit models of a

microwave chip and packaged FET, respectively [1]-[3].

These loads can be matched using the configurations given

in Figs. 4-6.
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TABLE II
ELEMENTVALUES FORTHE BUTTERWORTHFUNCTION,

n=l, m=l, r=2, u=2, AND R,= 1.0!2

841

K

0.8(

0.85

_

0.9[

-

0.95

.

0.9:

Ripple Parameter C2

0.01 0.04 0.09 0.16 0.25 0.36

z
01 0.66516 0.48296 0.39948 0.34865 0.31345 0.28719

‘o 2 0.12030 (). 14958 0.16144 0.16594 0.16689 0.16598

’03 1.75313 0.83238 0.52833 0.37827 0.29001 0.23219

’04 0.31707 0.25781 0.21351 0.18012 0.15441 0.13419

RL
0.34576 0.31178 0.28263 0.25777 0.23655

z

0.21834

01 0.76021 0.55172 0.45618 0.39803 0.35778 0.32776

‘o 2 0.14220 0.17564 0.18869 0.19332 0.19392

z

O. 19248

03 1.94020 0.92020 0.58348 0.41754 0.31973 0.25580

’04 0.36292 0.29295 0, 24134 0.20279 0.17330 0.15022

‘L 0.39857 0.35863 0.32442 0.29535 0.27060

z

O. 24942

01 0.88386 0.64100 0.52973 0.46204 0.41521 0.38030

‘o 2 0.17220 0.21088 0.22525 0.22982 0.22984 0.22758

z
03 Z. 16198 1.02441 0.64888 0.46389 0.35492

z

0.28374

04 0.42123 0.33701 0.27591 0.23074 0.19646 0.16979

RL
0.46742 0.41977 0.37894 0.34431 0.31491 0.28982

‘o 1 1.06993 Cl. 77498 0.63994 0.55786 0.50113 0.45887

‘o 2 0.21998 Cl. 26603 0.28191 0.28605 0.28489 0.28120

z
03 2.45308 1.16203 0.73546 0.52531 0.40156

z

0.32078

04 0.50437 (1.39890 0.32399 0.26936 0.22829 0.19657

‘L 0.57009 ().51169 0.46119 0.41829 0.38192 0.35094

‘o 1 1.27354 0.92100 0.75981 0.66198

z

0.59442 0.54414

02 0.27446 0.32781 0.34480 0.34811

z

0.34544 0.34002

03 2.71964 1, 29048 0.81707

z

0.58355 0.44597 0.35614

04 0.58611 0.45931 0.37078 0.30687 0.25917 0.22254

‘L 0.67926 0.61176 0.55180 0.50037 0.45663 0.41934

I T .--.-.-Lz 02

z.,.

Flg.5. Circuit realization useful in output matching packaged FET
amplifiers; Butterworth function with n = 1, m= 1, r=2, and cr =2.

1RL

~~
(b)

Flg.7. (a)and(b) Reactive constraint load.

A. Simple Low-Pas sConstraint

The integral constraint for the load of Fig. 7(a) is given by
[13], [14]

!
.m

o lnlsJ2)[’~*<: (33)

where ~ = R ~/Z ~~.It is eas y to apply this to an idealized gain

function defined by

Fig. 6. Circuit realization useful in output matching lpackaged FET
amplifiers; Chebyshev function with n = 2, m = r = 2, and cr = 2. Io, elsewhere. (34)
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TABLE III
ELEMENT VALUES FOR THE CHEBYSHEV FUNCTION,

?l=2, m=2, ?=2, E=2, AND& =1.0f2

Ripple Parameterez

K 0.01 0.04 0.09 0.16 0,25 0.36

z
01 0.45932 0.37355 0.32842 0,29533 0.26817 0.24498

‘o 2 0.17064 0.18183 0.17814 0.16968 0.15959 ‘O. 14922

‘o 3 0.12566 0,08570 0.06745 0,05641 0.04873 0.04296 ‘

0.80 ’04 0.16302 0.10601 0.08284 0.06924 0.05985

z
0.05280 1

05 0,20299 0.19081 0.18556 0, 17983 0.17276 0.16473 ~

‘O 6 0.09783 0.11489 0.12361 0.12682 0.12627 0.12331

‘L O. 22985 0.18739 0.15790 0.13382 0.11361 0.09670

‘o 1 0.53043 0.43096 0.37733 0.33760 0.30510 0.27757

‘o 2 0.20025 0.21153 0.20563 0.19452 0.18189 0.16927

’03 0.14332 0.09769 0.07675 0.06402 0.05514 0.04847

0.85 ‘o 4 0.18685 0.12174 0.09494. 0.07907 0.06807 0.05983

z
05 0.23834 0.22493 0.21803 0.20996 0.20031 0.18977’

z
06 0.11731 0.13758 0.14697 0.14942 0.14743 0.14283

‘L 0.26728 0.21650— O. 18055 0.15134 0.12721 0.10735

Z1
o. 62570 0. 50691 0. 44069 0.39134 0. 35134 0.31791

z
2 0.2 40411 0. 25078 0. 24107 n. 22590 0. 20964 0. 19394

’03 0.16628 0. 11326 0.08870 0. 0736A 0.06316 0.05530

0.90 Z4
o. 21901 0. 14287 0.11096 0.09179 0.07854

Z5

0.06866

0. 28819 0.27293 0. 26268 0.25035 0. 23640 0.22197

‘O 6 0. 14584 0.17032 0, 17968 0.18009 0.17542 0. 16813

‘L 0.31839 J O, 25510 0.20934 0.17273 0, 14325 0.11958

‘o I O. 77562 0.62239 0.53331 0.46753 0.41549
z

0.37304

02 0.303495 0.30951 0.29198 0.26969 0.24763 0.22729

z
03 0.20096 0.13654 0.10612 0.08736 0.07434 0.06470

0.95 %4 0.27116 0, 17634 0.13522 0.11048 0.09352 0.08106
z

05 0.37362 0.35323 0.33382 0.31192 0.28959 0.26824

‘O 6 0.19726 0.22685 0.23288 0.22754 0.21712 0.13436

‘L 0.40106 0.31356 0.24976 0.20092 0.16338 0.13436

zl
1.40439 1, ’00 232 0, 80290 0. 67526 0,58399 0,51457

‘o 2 0.52473 0.47967 0.42’728 0.381353 0.34245 0.30956
z

03 0.33371 0.21372 0.15844 0.12610 0.10475
1.00

0.08955

‘o 4 0.54595 0.30894 0.21719 0.16780 0.13679 0.11546

’05 0.85844 0.69338 0,58572 0.50746 0.44719 0.39911

‘O 6 0.52473 0.47967 0.42728 0.38135 0.34245 0.30956

‘L O. 73692 0.48078 0.343.06 0.25751 0.19998 0.15929

Substituting (34) in (33) and carrying out the integration

result in the optimal gain-bandwidth limitation given by

K <1 – exp {–n~= (ZO1/R,)]. (35)

Application of (33) to an actual gain function is not as easily

accomplished. Instead we will use the equivalent coefficient
relations derived by Youla [14]. It is necessary to factor

S11(2)s11 (– A) in the 1 domain whenjfil = 2 is substituted in

Is,l(jQ) l’. The gain-bandwidth limitations in terms of
maximum return loss versus c are shown in Fig. 8(a) for the

ideal case and the Chebyshev function of n = 2, m = r = 1

for different c. This figure shows the nature of the tradeoff

involved in gain versus reactive constraint and the ripple

factors. Similar curves are obtained for the case of n = 4 and

m = r = 1 and are shown in Fig. 8(b).

B. Double-Order Low-Pass Constraints

The integral constraints for the load given in Fig. 7(b) are

obtained as [13], [14]

(36)

and
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K
—

0.8[

0.8!

0.90

0.95

1.00

8 -

7 -

6 -

5 -

‘o 1

Z02

Z03

Z04

‘L

Zol

Z02

Z03

’04

‘L

Zol

Z02

Z03

’04

y

Zo 1

Z02

Z03

’04

‘L

Zol

Z02

Z03

’04

‘L

TABLE IV
Eumrmwr VALUES FORTHE CHEBYSHEVFUNCTION,

11=1, m=2, r=l, U=2, AND R,=l.OQ

0.01

1.6283

7.28910

4.35363

16.87730

4.20642

1.42045

6.18061

3.83680

14.45789

3.74068

1.21656

5.11971

3.34044

12.17441

3.30479

0.99819

4.02975

2.82776

9.88635

2.88112

0.59137

2.29547

1.98329

6.66693

2.53034

0.04

2.16842

6.17581

6.35365

15.67126

6.81131

1.89345

5.28913

5.64180

13.64831

6.16683

1.62557

4.44338

4.95694

11.73307

5.57689

1.34351

3.58364

4.24652

9.80949

5.03109

0.86931

2.29045

3.07415

7.01458

4.66351

/

/

&

,*$.

7j-L -

E
~

?3

~\

Z2

1 -
ZoI/RcJ

I

o 1 2 3
(a)

0.09

2.58242

6.02250

8.46714

17.10022

10.27499

2.26208

5.20373

7.55019

15.04164

9.41017

1.95240

4.42627

6.66735

13.09038

8.63172

1.63144

3.64303

5.75377

11.12694

7.93349

1.11127

2.47478

4.24452

8.17547

7.47668

0.16

2.9573J

6.17289

10.65925

19.26852

14.63432

2.60042

5.3756(

9.53092

17.0596(

13.5041~

2.25757

4.61876

8.44526

14.96330

12.49698

1.90562

3.86021

7.32347

12.84757

11.60657

1.34379

2.71927

5.46897

9.58424

11.00329

8 -

7 -

6 -

5 -—

<3

I

0.25

3.32178

6.47244

12.90771

21.78092

19.92522

2.93196

5.67108

11.56344

19.36978

18.47971

2.55887

4.91315

10.27086

17.07846

17.19808

2.17769

4.15267

8.93677

14.75848

16.07080

‘1.57024

2.99461

6.73017

11.11554

15.27030

0.36

3.68708

6.86199

15.19693

24.49368

26.17624

3.26529

6.04299

13.63318

21.85036

24.36155

2.86239

5.26827

L2.13037

19.33503

!2.75623

2.45156

4.48977

LO.58050

~6.78106

?1.34537

1.79545

3.28996

8.01637

.2.72111

?0.2998

(b). .
Fig. 8. (a) Maximum passband return loss versus time constant z= R~/ZOlfor the Chebyshev functions with)l =2,

m= r= 1, and a= 2. (b) Maximum passband return loss versus time constant z= R,/ZOlfor the Chebyshev function with

n=4. m=r=l, anda =2.
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TABLE V

ELEMENT VALUES FOR THE CHEBYSHEV FUNCTION,

~=1, m=l, r.=2, a=2, AND 17g=l.0Q

0.01

0.72487

0.11388

1.50166

0.31599

0.35655

0.82918

0.13456

1.66461

0.36182

0.41236

0.96503

0.16282

1.85940

0.42018

0.48593

1.16908

0.20744

2.11863

0.5035

,0.59767

1.78078

0.34406

2.74789

0.71109

0.95515

0.04

0.52990

0.13983

0.73006

0.25802

0.33710

0.60470

0.16363

0.80930

0.29331

0.38989

0.70061

0.19525

0.90415

0.33748

0.45959

0.83918

0.24258

1.03013

0.39883

0.56519

1.14161

2.34912

1.28665

1.52701

1.83763

0.09

0.4346

0.14711

0.4735!

0.2147!

0.3191:

0.4937{

0.1706”

0. 5244)

0.2426!

0.3683;

O. 5678(

0.20082

0.58491

0.27707

0.43276

0. 6694(

0.2435:

0.6635S

0.32341

0.52770

0.84985

0.32267

0.80137

0.40753

0.73112

0.16

0.37124

0.14597

0.34542

0.18192

0.30186

0.41940

0.16772

0.38190

0.20456

0.34727

0.47813

0.19494

0.42474

0.23195

0.40569

0.55489

0.23160

0.47899

0.26777

0.48879

0.67366

0.29092

0.56353

0.32595

0.64274

0.25

0.32317

0.14050

0.26861

0.15641

0.28521

0.36299

0.16012

0.29635

0.17509

0.32675

0.41034

0.18404

0.32850

0.19733

0.37918

0.46971

0.21493

0.36809

0.22559

0.45103

0.55320

0.26038

0.42455

0.26764

0.57000

0.36

0.28441

0.13294

0.21746

0.13614

0.26918

0.31768

0.15041

0.23938

0.15179

0.30698

0.35639

0.17121

0.26442

0.17014

0.35377

0.40328

0.19717

0.29447

0.19283

0.41566

0.46486

0.23277

0.33451

0.22434

0.50957

For the ideal gain response of (34), these constraints become Since the lines are relatively short, only one-eighth the

IC=l-exp
{’

—z, ct2 — 1201

R, 1
(38)

and

zo~~ 1

R,

()

Zol R~ 3ct2 i- 1 “
(39)

3R, + 3201 L72– 1

It is clear from these relations that once the first or “inner”

reactive constraint is satisfied exactly, there is a limit on the

second constraint which will be achievable with a given gain
function. For actual functions this restriction is still present,

but the range will depend also on the ripple factor. Youla’s

coefficient constraint [14] is applied for the Chebyshev

function of n = 2 and m = r = 2 with the required

configuration to realize this load. The results using the

equality sign are shown in Fig. 9.

The graphs of Figs. 8 and 9 may be used for matching

lumped constrained loads by distributed lossless networks.

wavelength at the center of the band, the-open- and short-

circuited stqbs can be approximated by lumped capacitors

and inductors, respectively [12]. The approximate values

may be obtained from

9
tan –

CY
2

z~fo %zo 1

(40)

and

R~ tan ~

L= z
27cfo ‘2

(41)

where f. is the center frequency at which 8/2 = 45° for this

class of functions. If we normalize 2nfo - 1, we can read

Z1 = R~ C and Zz = L/R~ directly from Figs. (8) and (9) for

the octave band. It has been found, in practice, that this

comparison is very useful for obtaining an estimate on how

well a certain load can be matched in the given band.
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2= 0,01 0 09 0.25 0.09 0,01
10 -

0,95 -

090 -

085 -

080 -

—*— t,

—x— t~

~ t
o 1,0 1.5 2.0 25 3.0 t,

o 01 0.2 0,3 0.4 05 06 t~

Fig. 9. Gain factor K versus time constants ~~ = Rg/Zo ~ and ~~ = Z02 /Rg for the Chebyshev function with n = 2,
m=r=2, anda =2.

TABLE VI

MEASURED s,, OF A 1-V-GATE GaAs CHIP FET
:

’22

rREQ (GHz) WIG ANGLE

7.0 0.834 - 19.3

7.5 0.832 - 7.0.4

8.0 0.830 -21.4

8.5 0.829 - 22.5
—.

9.0 0.828 - 23.6

9.5 0.827 - 24.7

10.0 0.826 - 25.7

10.5 0.826 - 26.8

11.0 0.826 -27.8

11.5 0.826 - 28.9

12.0 0.826 - 29.9

12.5 0.826 -30.9
--

13.0 0.827 -31.9

13.5 0.828 -33.0 _

14.0 0.829 -34.0

V. EXAMPLES

In this section, we consider the broad-band matching of

the output circuit of the GaAs FET amplifiers. In the first

example the output matching circuit of a l-p-chip FET is

designed for the 7–14-,GHz baad.

The second example is concerned with the design of the

output matching network of a packaged FET Ito cover the

4-8-GHz frequency band [3].

A. I-p-Gate FET

The output of the chip FET. can be modeled as an

open-circuited stub in parallel with a resistor as shown in

Fig. 7(a). The parameters of the model for measured SZz of

the FET, tabulated in Table VI for 7–14 GHz, are obtained

as

Rg = 497.5 Q

201 = 236.2 Q

1 = $ wavelength at 10.5 GHz. (42)

Now for u = 2 (octave bandwidth) and ~ ~ = 201 /Rg =

0.47477, we can get an estimate from Table I corresponding

to the configuration of Fig. 4. For K = 0.95, ~ ~ can be

realized exactly for a ripple factor between 0.25 and 0.36. It is

found by a simple interpolation that K = 0.95 with 62 = 0.3

will absorb the reactive constraint exactly, From (17), with

n = 2 and m = r = 1, the reflection function is given by

1 + 0.339392 + 2.66838A2 + 0.3392913 + 14

‘1 l(A) = 1 + 128754A + 3.28814~2 + 1.2875423 + /14“

(43)

The synthesized circuit is given in Fig. 10 with its response

shown in Fig. 11.

B. Packaged FET

The output of the packaged FET can be modeled with the

configuration shown in Fig. 7(b). The element values for this

model for the measureds ~z of the FET, tabulated in Table

VII for the 4-8-GHz band, are obtained as

R, = 139.12 Q

201 = 107.52 Q

202 = 23.16 Q

1= ~ wavelength at 6 GHz. (44)

For u = 2, ~1 = 0.77286, and ~~ = 0.16647, an estimate

can be obtained from either Table II or Table III. From
Table II, for the Butterworth function, we see that K

between 0.95 and 1.0 and 82 approximately equal to 0.09 will
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TABLE VII

MEASURED s,, OF A PACKAGED GaAs FET
00 -

/’\x ~ <x

x

/’
\x =x

-lo- \\ / \
x ‘=x-x x

.20 -

% -30 -
g

3

’22

FREQ (GHd
MAG ANGLE

5.0 0.485 -55.8

I I
-Lo

i

—x — response of Figure2[a) I Rt =56.98 !21
5.5 0.457 -64.0

6.0 0.412 - 74.7
I

70 80 9,0 1o11 110 120 130 ILO

FREQUENCY ((%Iz)

Fig. 11. Output circuit response of a chip FET amplifier.

6.5 0.370 - 83.3

7.0 0.320 -95.9

7.5 0.266 -109.9

I I
8.0 1 0.244 I -132.0

[47.72 - 23J6 ) ~
,

,,----- ---——.. . . . . ———.1
1
1 Z02 z03 I

t
Rg ! RL

I

37.67!I13912

(a)
1 i 1 g

FET : (

Lo_--_-------- ____-_. A

MATCHING NETWORK

1
I

I

Rg =497.5n

ZOI ❑236.2Q

Z02=158,LQ

z03=3113 Q

ZO, =4630$2

RL ❑ 56,98 Q

!=@ wave~wth at 10.5 %
MATCHING NETWORK

Fig. 10. Output matching network for a chip FET amplifier m the
/. V8 wavelength at 6 GHz7-14-GHz range using the Chebyshev function.

Fig. 12. Output matching network for a packaged FET in the 4-8-GHz
range using the Butterworth function. (a) Original circuit. (b) Series
shunted stub approximated by an inductor.absorb ~ ~exactly and satisfy q with inequality. It is found by

interpolation that

K = 0.98

ez = 0.08 (45)

will exactly absorb z ~ and satisfy ~z. The resulting reflection

function is given by

1 + 1.023372 + 2.4680912 + 0.9675623 + 14

‘11(2) = 1 + 3 45815A + 5.2016422 + 2.5304713 + 14 “

(46)

The synthesized circuit is shown in Fig. 12 with its response

in Fig. 13.

In the same manner, from Table III, we can obtain the

Chebyshev function parameters. The results are
I

—x — outpul response wrth RL =37,67n
-40

—o— output response with RL changed to 500 Q

I
4,0 5.0 6,0 7.0 S.o

FREQUENCY (GHZ)
K = 0.95

Fig. 13. Output circuit response of a packaged FET for the Butterworth

case corresponding to Fig. 12.82= 0.01 (47)

and
1 + 1.25754A + 4.7667722 + 3.31395A3 + 4.7667724 + 1.2575415 + lb (48)

‘11 ‘2) = 1 + 2 ~0878~ + 79207f)12 + 9. 19f)22~3 + 7.9207024 + 2.80878A5 + ~6 “
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f!
(L222-23.16)

~$

27. LL3

27.96 51,98

&i
37,72 5579

n

packaged FET ~

(a) ,

05056nH 2796 5198 09~6PF

(b)
3772

?7
R,

~ = 06229 cm (1P wavelmgth at 6GHZ )

Fig. 14. Output matching network for a packaged FET in the 4-8-GHz
range using the Chebyshev function. (a) Original circuit. (b) Series stubs

approximated by lumped elements.

00 -
—s2—

( ~~—

8 - % ~g>

-==i~~

-lo -

.20 -

5
z
z
~

-3,0 - —o— otiput response RL =55.71Q

—x — output response RL set to 50,0!2

-4,0 -

I
1
Lo 50 60 7,0 80

FREQUENCY (GHz)

Fig. 15. Output circmt response of a packaged FET for the Chebyshev
case corresponding to Fig. 14.

The synthesized circuit is shown in Fig. 14 in which the

distributed to lumped approximations are also used due to

practical realizability requirements. The output circuit re-

sponse is shown in Fig. 15.

The matching of the input circuits of the transistors with

required approximated tapered magnitude bandpass func-

tions may be easily accomplished using one-eighth wave-

length line structures [14], [15].

VI. CONCLUSIONS AND REMARKS

Characteristic functions to realize a new class of pro-

totype transmission-line structures have been derived for

both the Butterworth and the Chebyshev approximations.

The new prototype is capable of reactance absorption and at

the same time is able to adjust resistor ratios in a certain

range due to shorted parallel stubs in the structure [9]. Since

the line lengths are one-eighth the wavelength ;at the center

of the band, it is possible to approximate open and shorted

stubs by lumped capacitors and inductors, respectively.

847

Designs are tabulated for certain configurations which are

useful in broad-band matching of GaAs FET amplifiers

[1]-[3].

The gain-bandwidth restrictions are investigated for two

different reactive loads. The relations for two different

Chebyshev functions with required configurations are

compared with the optimal gain-bandwidth relations ob-

tained for idealized gain functions in the distributed domain.

The results can be applied, with minor modifications, to

broad-band matching of series open-circuited stubs and

series resonant circuits.
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