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Transfer Function Approximations for a
New Class of Bandpass Distributed
Network Structures

M. E. MOKARI-BOLHASSAN, MEMBER, IEEE, AND WALTER H. KU, MEMRER, IEEE

Abstract—Characteristic functions for a new class of prototype
bandpass transmission-line structures have been derived for both the
maximally flat and equiripple or Chebyshev characteristics. The
class of bandpass distributed structures considered in this paper
consists of commensurate transmission lines with constraints in
the form of a shunt open-circuited stub and/or a series short-circuited
stub. The gain-bandwidth restrictions imposed by the reactance
constraints have been derived and some explicit results are presented
for the synthesis of this class of bandpass transmission-line networks.
Results presented in this paper are directly applicable to the design of
broad-band microwave passive and active networks. In particular, the
resulis are applied to the design of broad-band matching networks for
octave-band GaAs FET amplifiers.

I. INTRODUCTION

BOTH passive and active microwave circuit designs,
Ee often encounter the problem of broad-band matching
of complex loads with prescribed reactive constraints.
Specific examples include the broad-band matching of
microwave antennas, the design of broad-band bipolar and
FET amplifiers [1]-[3], and the broad-band coupling to
high-Q resonant loads and circulators [4], [S]. In order to be
able to absorb the reactive part of the load admittances,
different circuit configurations are often needed. The general
distributed network configuration shown in Fig. 1 has great
flexibility and is useful for a number of broad-band match-
ing applications especially for the design of broad-band
bipolar and GaAs FET amplifiers.

Based on the circuit configuration shown in Fig. 1,
characteristic functions for a new class of prototype
bandpass transmission-line structures have been derived in
this paper for both the maximally flat and equiripple or
Chebyshev characteristics. The new class of prototype char-
acteristics developed has great flexibility in adjusting the
number of zeros of transmission at the origin and at infinity
and the commensurate line length is one-eighth the wave-
length at the center of the band. Having a relatively short
transmission-line length and zeros of transmission both at
the origin and infinity makes the new prototype useful for
broad-band matching of complex impedances since the
structure will contain both open-circuited and short-
circuited stubs.
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Fig. 1.

A prototype of bandpass distributed structures.

The reactance constraints are represented in the form ofa
shunt open-circuited stub and/or a series short-circuited
stub. The gain-bandwidth restrictions imposed by these
reactance constraints have been derived and some explicit
results for the synthesis of this class of bandpass

" transmission-line networks are presented in this paper. For

octave-band applications, results for broad-band designs
using five different circuit configurations are tabulated in
terms of the gain factor K and the ripple parameter e.
Gain-bandwidth limitations are obtained for two different
load constraints encountered in the design of the output
matching networks for microwave chip and packaged FET
amplifiers. These results are compared with the optimal
limitations obtained for the ideal gain characteristics.

A characteristic function realizable in the form of Fig. 11is
given by [6]-[11]
KOP™"(1 + Q) )

P n+m+r(92) ( )
which has m zeros of transmission at Q =0, r zeros of
transmission at Q = oo, and n cascaded lines. In (1), K is the

gain parameter and P,,,., is a polynomial of order
n+ m+ rin Q% If we use the transformation,

<1

|512|2 =

Q=tan 0
X =acos 0 2)
the gain function (1) reduces to
K
Sia)? = 3
| 12! 1 + er+m+r(X2) ( )
(0(2 _ xZ)mXZr

where the zeros at the origin are mapped to x = « and the
zeros at infinity are mapped to x = 0. It is easy in general to
make an approximation to (3) in the equiripple or Cheby-
shev sense if » = 0, but the solution is now known where r or
m is not zero.

The frequency response of (3) repeats itself after each 7/2
radians and there are no clear cutoff frequency points as can
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Fig. 2. The characteristic response of the prototype corresponding to (3).
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Fig. 3. The characteristic response of the prototype corrésponding to (6).

be seen from Fig. 2. But if we use the transformations given
in (4), we obtain a more standard form of characteristics
versus x as is shown in Fig. 3. The characteristics repeat after
each 7 radians. The new set of transformations are

Q =tan 0/2
4)

(5)

X =a cos

or _
2=0( X

o+ x

Substituting (5) in (1), the results are
LT
o+ X o+ X

oa—X
Pn+m+r (m)

|s12) =

_ K@)y — x)o + x)

((x + x)n+m+rPn+r+m (u)

o+ X

_ K)o = x)™(o + x)
Quimr(0 — X)
1
T Hewo) ©
(o0 — x)™( + x)

The return loss of the bandpass structure of Fig. 1, P gp, is
given by
Hn+m+r(x)

Kl I ey

(7)
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where the zeros at the origin are mapped to x = « and the
zeros at infinity are mapped to x = —a. Now even for the
Chebyshev case we will be able to approximate (7) if
n -+ m + r is an even number. It will be shown subsequently
that to make (7) maximally flat or equiripplen + m + r must
be even. Note that the commensurate transmission lines will
be one-eighth wavelength long at (Fy + F.)/2, where Fy
and F, are, respectively, the high and low end of the
frequency band.

II. BUTTERWORTH APPROXIMATION
We shall rewrite (7) as
K * PBP = 1 + (10“"‘/10 - 1)

n+m+ry n+m+r—1
Cn+m+rx +Cn+m+r-—1x +

. 8)

(o= x)"(a + xY

Although. the function does seem to be even, the gain
function will be even if n 4+ m + r is even. To make (8)
maximally flat around x = f we need to set

O'Pgp )
'=0’ =051"." —1
Bx) i n+m+r )
at x = f3, center of the passband. This leads to
242 _ n+m+r
K- Pyt LE—F) (10)

(0 — xy™(o + x)

A is determined from band-edge requirements;i.e.,for f =0
and band edge x= 11 (Fig. 3) if we require that
10 log Ppp = a,, dB at x = +1 the result will be

A7 = (0 — 1o+ 1) (11)

The attenuation on the other band edge may be determined
from (10). Transforming (10) back to the Q2 domain by using

1-0Q?
X=oi o (12)
we obtain
KQ2™(1 + Q2)"
2 _
|512] Q(1 + Q7)Y + (1 — Q2+ (13)
where
a(oc — 1o + 1)
=0 E) (14)
III. CHEBYSHEV APPROXIMATION
We may rewrite (6) as
K
2 _
s = ) 13)

It is easy to show that the response will be equiripple
between x = a and x = b if [6]-[10]

F(x) =1+ cos (n¢ + m&, + r&y) (16)
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where
cos ¢ = g}%—gbi@ (17a)
cos &, = x(a+b ?azf)b_’)_(j(f :)b) — 2ab (17b)
c0s £, = x(a+b —I(—a2f)b;‘(j(i :)b) — 2ab (170)

In order for |s,,|* to be an even rational function in Q,
n+m+r must be an even number. To show this let
x=a= +1and x = b= —1, then (17) reduces to

and cos ¢ =x =a cos 0 (18)
cos€1=ax—1
o— X
ax + 1

fo= ) 19

cos &= (19)

substituting this in (16) leads to
F(x) =1+ cos (n¢) cos (m&y + ré,)
1 — sin ¢n sin (mé, +1&,) (20)
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three stubs; two zeros of transmission at the origin and one
zero of transmission at infinity), the characteristic function is
given by

|S12| = 58“394(4} ) 6 8

Co+ CiQ° + C,Q* + C,Q° + C,Q

where
c0 = e3[/a? — 1 (40® — 8a* + 40®) + 40" — 8a5 + 4a%)
= e3[ /o — 1(—160° + 80* — 8a2) — 1607 + 164°]
C2 = 80 + e2[\/u? — 1 (2408 + do* + da?)
+ 2407 — 120 + 40°]
Cy =83 + sz[ﬁ—— —160°) — 1607 + 8o + 8%]

Cy=el[Jo* — 1(4a® — 4o*) + 4a” — 40°].

(24)

(25)

This function has the required form and may be synthesized
to yield element values for different K and &;.

For special cases where n is even and m = r, (16) may be
written in the following form

where
cos (nep) = T,(x 21 K
s (9)= T, (1) 500 = . (26)
2 2
sin (ng) = /1 — x7Q,(x) (22) 1+ ¢ cos §¢+m5J
where T,(x)is a Chebyshev polynomial of degree n and Q ,(x) where
is a rational polynomial of degree n [6]-[10]. To show that 5
(19) is rational we proceed as follows: cos £ = x \/ oc2 _— 12 27)
cos (m&y + ré,) = cos (mé,) cos ré, o
— sin m& sin ré, (23a) and
. . 82 = 28% (28)
sin (mé; + r&,) = sin mé&, cos ré,
+ cos mé; sin ré, (23b) For this case,letn = Oandm = 1,the characteristic function
is obtained as
cos mé, =2 cos (m — 1), cos &; — cos (m — 2)¢, )
. 2KQ (29)
(23¢) 512 =52 2 — 1)(1 — Q*)?
sin m¢y =2 sin (m — 1)¢; cos &5 = sin (m = 2)01 ek has the required form.
(23d) For n = 2 and m = 1, we have for cos? (¢ + &)
{Q¥[a?( T1 4+ a)? + 1.0 = 20( /o — 1 + o)) + Q[ —4da?(/o? — 1 +a)? + 4]
+ Q602(/aZ — 1 + ) + 6 + da(/a? — 1 + )] + Q[ —4a’( —1+a)*+4]
) 9 +{a2 (o =14+ a)? +1—20( /o> =1 +a)]} N (30)
cos +¢)= ; =_
@ 40%(1 + Q2 D
It is clear that cos mé, and cos r¢, are rational functions of ~ and
x. The terms sin m¢, and sin r¢, are multiplications of the
1 — x? term and a rational function of x (see (23d)). K
Substituting t_hese in (16) it is easy to see that wthq resultisa |s12]* = 11 &2 cos? (¢ + &)
rational function of x. To make the function even in terms of . .
xand Q, n + m + r has to be constrained to be even number. 4Ka*Q%(1 + Q) (31)

For n=1, m= 2, and r = 1 (i.e., one cascaded line and

T 302Q%(1 + Q2P + 2N
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TABLE 1

ELEMENT VALUES FOR THE CHEBYSHEV FUNCTION,
n=2m=1r=10=2ANDR, =10Q

Ripple Parameter e2
X 0.01 0.04 0.09 0.16 0.25 0.36
%1 |1.0191 0.6125 0.4695 0.3908 10.3382 0.2991
ZOZ 0.3122 0.2825 0,2585 0.2371 0.2177 0.2002
0.80]%3 |o0.1658 0.1042 0.0749 0.0581 |0.0472 0.0396
Zo4 ] 0.5410 0.2258 0.1361 0.0957 |o0.07330 | 0.0592
Ry fo.1529 0.1065 0.0870 0.0766 |0.0702 0.0653
Zo1 |1.1443 0.6919 0.5310 0.4414 |o.3811 0.3363
%02 10.3606 0.3255 0.2965 0.2705  |0.2472 0.2265
0.85 | %3 |0.1878 0.1172 0.0840 0.6495  0.0527 0.0442
%04 | 0.5959 0.2492 0.1505 0.1060 |0.0812 0.0656
Ry Jo.1746 0.1221 0.1002 0.0883 |0.0811 0.0762
%y1 |1.3011 0.7924 0.6082 0.5043 |0.4341 0.3819
%02 0. 4241 0.3813 0. 3449 0.3125 |0.2839 0.2588
0.90 ZO3 0.2156 0.1335 0.0953 0.0734 0.0594 0.0497
ZO4 0.6614 0.2776 0.1680 0.1184 0.0908 0.0734
RL 0.2031 0. 1431 0.1179 0. 1042 0.0957 0.0900
%51 [1.5251 0.9365 0.7168 0.5913  |0.5062 0.4434
Zy2 |0.5199 0.4634 0.4140 0.3710  {0.3341 0.3025
0.95 {253 |o, 2555 0.1566 0.1109 0.0849  |0.0684 0.0571
%94 {o0.7497 0.3165 0.1919 0.1354  |0.1037 0.0838
Ry lo.za72 0.1762 0.1458 0.1289 [0.1183 0.1111
%01 {2.2789 1.3662 1.0165 0.8205  |0.6915 0.5987
ZOZ 0.8411 0.7030 0. 6004 0.5222 0.4608 0.4114
1.00 %53 lo.3876 | 0.2253 0.1545 0.1160  {o.0922 | 0.0763
%04 |1.0502 0.4379 0.2616 0.1823  |0.1384 0.1110
Ry lo.4608 0.3205 0.2574 0.2222  l0.2002 0.1855

Fig. 4. Circuit realization useful in output matchingl chip FET
amplifiers; Chebyshev function with n =2, m=r=1,and a = 2.

or specifically
4KQ*(1 + Q?)?

the Chebyshev function of (17) for the configuration of Fig.
6. The synthesized results are presented in Table III. Two
other tables are presented for completeness and further
usage. The elements for the Chebyshev function with n = 1,
m=2, r=1, and o« =2 are given in Table IV and the
elements’ valuesforn = 1,m = 1,r = 2,and o« = 2 are given
in Table V.

|12l = (QF[a?(/o? — 1+ a)? + 1.0 — 2a(/a® — 1 + o))
+ Q[ —4a2( /o2 — 1 + a) + 4167 + 4} + Q*{[60%(/2 — L + a)? + 6 + do(\/o® — 1 + a)]e* + 8}
+ QY[ —da?(faZ — 1 + o) + 4]e% + 4} + [02(/o? — 1 + &) + 1.0 — 2(/e® — 1 + a)]e?). (32)

This function is synthesized for different K and ¢ and the
configuration given in Fig. 4. The results are tabulated in
Table I This configuration is usefulin output matching chip
FET amplifiers [1]-[3]. For the packaged FET’s the
configurations given in Figs. 5 and 6 arerequired. To realize
the circuit of Fig. 5, we use the Butterworth functions of (15)
with n =1, m = 1, and r = 2. The element values are tab-
ulated in Table II. We have chosen n =2and m=r =21in

IV. GAIN-BANDWIDTH LIMITATIONS

In this section, the gain-bandwidth restrictions are
applied to the reactively constrained loads given in Fig. 7(a)
and (b), which correspond to the output circuit models of a
microwave chip and packaged FET, respectively [1]-[3].
These loads can be matched using the configurations given
in Figs. 4-6.
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TABLE 11
ELEMENT VALUES FOR THE BUTTERWORTH FUNCTION,
n=1m=1r=2a=2ANDR =10Q

Ripple Parameter 52
K 0.01 0.04 0.09 0.16 0.25 0.36
%01 | 0.66516 | 0.48296 0.39948 | 0.34865 |0.31345 | 0.28719
%02 { 0.12030 | 0.14958 0.16144 | 0.16594 |0.16689 | 0.16598
0.80) %3 | 1.75313 0.83238 0.52833 0.37827 |0.29001 0.23219
%04 | 0.31707 | 0.25781 0.21351 | 0.18012 |0.15441 | 0.13419
Ry, lo.34576 | 0.31178 0.28263 | 0.25777 |0.23655 | 0.21834
Zo1 | 0.76021 | 0.55172 0.45618 | 0.39803 l0.35778 | 0.32776
%oz | 0.14220 | 0.17564 0,18869 | 0,19332 [0.19392 | 0.19248
0.85 253 | 1.94020 | 0.92020 0.58348 | 0.41754 10.31973 | 0.25580
254 |0.36202 | 0.29295 0.24134 | 0,20279 {0.17330 | 0.15022
R, 10.39857 | 0.35863 0.32442 | 0.29535 {0.27060 | 0.24942
%01 |0.88386 | 0.64100 0.52973 | 0.46204 |0.41521 | 0.38030
%02 {0.17220 | 0.21088 0.22525 | 0.22982 |0.22984 | 0.22758
0.901253 |2.16198 | 1.02441 0.64888 | 0.46389 10.35492 | 0.28374
%04 |0.42123 | 0.33701 0.27591 | 0.23074 [0.19646 | 0.16979
Ry lo.46742 | 0.21977 0.37894 | 0.34431 |0.31491 | 0.28982
%01 |1.06993 | 0.77498 0.63994 | 0.55786 [0.50113 | 0.45887
Zo2 |o0.21998 | 0.26603 0.28191 | 0.28605 }0.28489 | 0,28120
0.951Z05 12 45308 | 1.16203 0.73546 | 0.52531 [0,40156 [ 0.32078
Zos lo.50437 | 0.39890 0.32399 | 0.26936 10.22829 ]0.19657
R, Jo.57009 | 0.51169 0.46119 | 0.41829 ]0.38192 0.35094
201 |1.27354 | 0.92100 0.75981 | 0,66198 [0.59442 |0.54414
%oz 1o0.27446 | 0.32781 0.34480 | 0.34811 0.34544 |0.34002
0.98 1205 |2.71964 | 1.29048 0.81707 | 0.58355 |0.44597 ]0.35614
Zys Jo.58611 | 0.45931 0.37078 | 0.30687 ]0.25917 | 0.22254
R lo.67926 | 0.61176 0.55180 | 0.50037 l0.45663 10.41934

Zo2

R =[ Lz:—’_o im ]R Re {: I Zo | Rg I Zy %
109 J:_L__——:)_Q [—{:’—OJJ I—E:—Q 3
(a) (b)

Fig. 5. Circuit realization useful in output matching packaged FET . )
amplifiers; Butterworth function with n=1,m=1,r=2,and ¢ = 2. Fig. 7. (a) and (b) Reactive constraint load.

A. Simple Low-Pass Constraint
The integral constraint for the load of Fig. 7(a)is given by

[13], [14]

- 1 2n
Zos [ n——mmda <= (33)
0 |51, Q) T
wheret = R,/Z ;. Itiseasy to apply this to an idealized gain
function defined by
A 1 +1
o - o
K, for [ —— <Q<
|Slz(jQ)'2= o+ 1 o — 1
Fig. 6. Circuit realization useful in output matching packaged FET
amplifiers; Chebyshev function with n =2, m=r=2,and a = 2. 0, elsewhere. (34)
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TABLE III
ELEMENT VALUES FOR THE CHEBYSHEV FUNCTION,
n=2m=2r=20=2ANDR, =10Q

Ripple Parameter ez
K 0.01 0.04 0.09 0.16 0.25 0.36

Zo1| 0.45932 | 0.37385 0.32842 | 0.29533 | 0.26817 | 0.24498

Zo2| 0.17064 | 0.18183 0.17814| 0.16968 | 0.15959 | 0.14922

Zo3 | 0.12566 | 0.08570 0.06745 | 0.05641 | 0.04873 | 0.04296
0.80] %04 | 0.16302 | 0.10601 0.08284| 0.06924 | 0.05985 | 0.05280 |
Zo5 | 0.20299 | 0.19081 0.18556 | 0.17983 | 0.17276 | 0.16473 |

%96 | 0.09783 | 0.11489 0.12361| 0.12682| 0.12627 | 0.12331

R | 0.22985 | 0.18739 0.15790 [ 0.13382 | 0.11361 | 0.09670

Zy1 ] 0.53043 | 0.43096 0.37733 | 0.33760 | 0.30510 | 0.27757

Zo2 | 0.20025 | 0.21153 0.20563 | 0.19452 | 0.18189 | 0.16927

203 | 0.14332 | 0.09769 0.07675 | 0.06402 | 0.05514 | 0.04847

0850 %04 | 0.18685 | 0.12174 | 0.03494] 0.07907 | 0.06807 | 0.05983

Zo5 | 0.23834 | 0.22493 0.21803 | 0.20996 | 0.20031 | 0,18977

Zo6 | 0.11731 | 0.13758 0.14637 | 0.14942 | 0,14743 | 0.14283

_ R 1 o0.26728 | 0.21650 0.18055 | 0.15134 { 0.12721 | 0.10735

Z01 1 0.62570 | 0.50691 0.44069 | 0,39134 | 0.35134 | 0.31791

%02] 0.240411 | 0.25078 0.24107 | 0,22590 | 0.20964 | 0,19394

%03 | 0.16628 | 0.11326 0.08870 | 0.07344 | 0.06316 | 0.05530

0-908 204 | 0.21901 | 0.14287 0.11096 | ©0,09179 | 0.07854 | 0,06866

Zo5 | 0.28819 | 0.27293 0.26268 | 0,25035 | 0.23640 | 0,22197

%06 | 0.14584 | 0.17032 0,17968 | 0,18009 l0.17542 | 0, 16813

R, 1o0.31839 | 0,25510 0.20934 | 0.17273 | 0.14325 | 0.11958

01| 0.77562 | 0.62239 0.53331| 0.46753 | 0.41549 | 0.37304

92| 0.303495] 0.30951 0.29198 | 0.26969 | 0.24763 | 0.22729

03| 0.20096 | 0.13654 0.10612 | 0.08736 | 0.07434 | 0.06470

0.95 § %5a| 0.27116 | 0.17634 0.13522 ] 0.11048 | 0.09352 | 0.08106

Zos| 0.37362 | 0.35323 0.33382{ 0.31192 ) 0.28959 | 0.26824

“06| 0.19726 | 0.22685 0.23288 | 0.22754 | 0.21712 | 0,13436

"L | 0.40106 | 0.31356 0.24976 ] 0.20092 | 0.16338 | 0.13436

Zo1] 1.40439 | 100232 0.802901 0.67526 | 0,58399 | 0,51457

Zoz| o0.52473 | 0.47967 0.42728 | 0,381353| 0.34245 | 0.30956

Z03) 0.33371 | 0.21372 0.15844 | 0.12610 | 0.10475 | 0.08955

1-00) 24 0.54595 | 0.30894 0.21719| 0.16780 } 0.13679 | 0.11546

Zo5) 0.85844 | 0.69338 0:58572 | 0.50746 | 0.44719 | 0.39911

06| 0.52473 | 0.47967 0.42728 | 0.38135 | 0.34245 | 0.30956

R | 0.73692 | _0.48078 0.34306 | 0.25751 | 0.19998 | 0.15929

Substituting (34) in (33) and carrying out the integration
result in the optimal gain-bandwidth limitation given by

K <1=exp{—n/o? — 1(Zo1/R,)}.
Application of (33) to an actual gain function is not as easily
accomplished. Instead we will use the equivalent coefficient
relations derived by Youla [14]. It is necessary to factor
$11(4)s11(—A) in the A domain when jQ = A is substituted in

|s1:(jQ)|>. The gain-bandwidth limitations in terms of
maximum return loss versus ¢ are shown in Fig. 8(a) for the
ideal case and the Chebyshev functionof n=2,m=r=1
for different e. This figure shows the nature of the tradeoff
involved in gain versus reactive constraint and the ripple

(35)-

factor ¢. Similar curves are obtained for the case of n = 4and
m = r =1 and are shown in Fig. §(b).
B. Double-Order Low-Pass Constraints

The integral constraints for the load given in Fig. 7(b) are
obtained as [13], [14] '

© 1 27IZ()1
In : dQ = 36
fo |511(JQ)|2 Ra ( )
and
1> 1 Z2 1{Zs(\?2
—| @ o <= ——(ﬁ). 37
ﬂjo |511(fg) |2 R,Z,, 3 R, ( )



MOKARI-BOLHASSAN AND KU: TRANSFER FUNCTION APPROXIMATIONS

L { 1/l”n\max]

n=1,m=2,r=1,a=2,ANDRq=1.0Q

TABLE 1V
FLEMENT VALUES FOR THE CHEBYSHEV FUNCTION,

K 0.01 0.04 0.09 0.16 | 0.25 0.36
ZOl 1.6283 2.16842 2.58242 2.9573! 3.32178 3.68708
0.80 202 7.28910 6.17581 6.02250 6.17289 6.47244 6.86199
203 4.35363 6.35365 8.46714 10.65925 12.90771 15.19693
204 16.87730 15.67126 17.10022 19.26852 21.78092 24.49368
RL 4.20642 6.81131 10.27499 14.63432 19.92522 26.17624
ZOl 1.42045 1.89345 2.26208 2.60042 2.93196 3.26529
ZO2 6.18061 5.28913 5.20373 5.37560 5.67108 6.04299
0.85 203 3.83680 5.64180 7.55019 9.53092 11.56344 13.63318
204 14.45789 13.64831 15.04164 17.05960 19.36978 21.85036
RL 3.74068 6.16683 9.,41017 13.50414 18.47971 24.36155
ZOl 1.21656 1.62557 1.95240 2.25757 2.55887 2.86239
ZOZ 5.11971 4.44338 4.42627 4.61876 4.91315 5.26827
0.90 203 3.34044 4.95694 6.66735 8.44526 10.27086 12.13037
204 12.17441 11.73307 13.09038 14.96330 17.07846 19.33503
RL 3.30479 5.57689 8.63172 12.49698 17.19808 |22.75623
ZO1 0.99819 1.34351 1.63144 1.90562 2.17769 2.45156
ZOZ 4.02975 3.58364 3.64303 3.86021 4.15267 4.48977
0.95 203 2.82776 4.24652 5.75377 7.32347 8.93677 10.58050
204 9.88635 9.80949 11.12694 12.84757 14.75848 { 16.78106
RL 2.88112 5.03109 7.93349 11.60657 16.07080 | 21.34537
Z01 0.59137 0.86931 1.11127 1.34379 1.57024 1.79545
ZOZ 2.29547 2.29045 2.47478 2.71927 2.99461 3.28996
1.00| Zp, | 1.98329 | 3.07415 | 4.26452 | 5.46897 | 6.73017 | 8.01637
204 6.66693 7.01458 8.17547 9.58424 11.11554 12.72111
RL 2.53034 4.66351 7.47668 11.00329 15.27030 20.2998
ol 8l
7+ Tr
6L N 6
&,
3 5 5
5 RS
__E
Al Z-025 < Ar &-009
o
5l ¢-009 5 3t
=002
£=001 2L
2 |
1L T
\yr= Zo/Rg /7 = Zoi/Rg
0 ' ' ' 2 ' 3 0 ‘ ] ‘ 2 ' 3
(a) (b)

Fig. 8. (a) Maximum passband return loss versus tume constant T =R, /Z,, for the Chebyshev functions withn = 2,
m=r=1, and ¢« = 2. (b) Maximum passband return loss versus time constant © = R,/Zo; for the Chebyshev function with

n=4m=r=1anda=2
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TABLE V
ELEMENT VALUES FOR THE CHEBYSHEV FUNCTION,
n=1m=1r=20=2ANDR,=10Q

K 0.01 0.04 0.09 0.16 0.25 0.36
Zo1 0.72487 0.52990 0.43465} 0.37124 | 0.32317 0.28441

0.86 o, 0.11388 0.13983 0.14716| 0.14597 | 0.14050 0.13294
203 1.50166 0.73006 0.47355! 0.34542 | 0.26861 0.21746

Zgy 0.31599 0.25802 0.21475] 0.18192 | 0.15641 0.13614

R, 0.35655 0.33710 0.31913| 0.30186 | 0.28521 0.26918

Zy; 0.82918 0.60470 0.49378| 0.41940 | 0.36299 0.31768

Iy 0.13456 0.16363 0.17061) 0.16772 | 0.16012 0.15041

0.85 Zy3 1.66461 0.80930 0.52444] 0.38190 | 0.29635 0.23938
204 0.36182 0.29331 0.24269] 0.20456 | 0.17509 0.15179

R 0.41236 0.38989 0.36837| 0.34727 | 0.32675 0.30698

I 0.96503 0.70061 0.56780| 0.47813 | 0.41034 0.35639

Zy, 0.16282 0.19525 0.20082| 0.19494 | 0.18404 0.17121

0.90 Zy3 1.85940 0.90415 0.58491| 0.42474 | 0.32850 0.26442
Zgy 0.42018 0.33748 0.27707} 0.23195 | 0.19733 0.17014

R 0.48593 0.45959 0.43276| 0.40569 | 0.37918 0.35377

Zgy 1.16908 0.83918 0.66940] 0.55489 | 0.46971 0.40328

202 0.20744 0.24258 0.24358] 0.23160 | 0.21493 0.19717

0.95 203 2.11863 1.03013 0.66359| 0.47899 | 0.36809 0.29447
Iy 0.5035 0.39883 0.32341| 0.26777 | 0.22559 0.19283

R 0.59767 0.56519 0.52770] 0.48879 | 0.45103 0.41566

Ip1 1.78078 1.14161 0.84985] 0.67366 | 0.55320 0.46486

Zyo 0.34406 0.34912 0.32267| 0.29092 | 0.26038 0.23277

Zys 2.74789 1.28665 0.80137| 0.56353 | 0.42455 0.33451

Zog 0.71109 0.52701 0.40753 | 0.32595 | 0.26764 0.22434

RL 0.95515 0.83763 0.73112| 0.64274 | 0.57000 0.50957

For the ideal gain response of (34), these constraints become

2
K=1—exp ;@@} (38)
g
and
—= < . 39
R, ™ Zoy | R, 30> + 1 (39)
3R, " 3Zgy \a? -1

Tt is clear from these relations that once the first or “innet”
reactive constraint is satisfied exactly, there is a limit on the
second constraint which will be achievable with a given gain
function. For actual functions this restriction is still present,
but the range will depend also on the ripple factor. Youla’s
coefficient constraint [14] is applied for the Chebyshev
function of n=2 and m=r=2 with the required
configuration to realize this load. The results using the
equality sign are shown in Fig. 9.

The graphs of Figs. 8 and 9 may be used for matching
lumped constrained loads by distributed lossless networks.

Since the lines are relatively short, only one-eighth the
wavelength at the center of the band, the open- and short-
circuited stubs can be approximated by lumped capacitors
and inductors, respectively [12]. The approximate values
may be obtained from '

tan 5
Co 2 40
anORme ( )
and
R, tan g
L~ be‘zoz (41)

where f; is the center frequency at which 6/2 = 45° for this
class of functions. If we normalize 2nf, = 1, we can read
7, = R, C and 1, = L/R, directly from Figs. (8) and (9) for
the octave band. It has been found, in practice, that this
comparison is very useful for obtaining an estimate on how
well a certain load can be matched in the given band.
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Fig. 9. Gain factor K versus time constants t, =R /Z,, and t,= Z,,/R, for the Chebyshev function withn = 2,
m=r= 2 anda = 2.

TABLE VI
MEASURED s,, OF A 1-u-GATE GaAs CHip FET
S22
FREQ (GHz) MAG ANGLE
7.0 0.834 ~19.3
7.5 0.832 - 20.4
8.0 0.830 -21.4
8.5 0.829 - 22.5
8.0 0.828 -23.6
9.5 0.827 - 24.7
10.0 0.826 - 25.7
10.5 0.826 - 26.8
11.0 0.826 -27.8
11.5 0.826 - 28.9
12,0 0.826 -29.9
12.5 0.826 -30.9
13.0 0.827 - 31.9
13.5 0.828 -33.0
14.0 0.829 - 34,0
V. EXAMPLES

In this section, we consider the broad-band matching of
the output circuit of the GaAs FET amplifiers. In the first
example the output matching circuit of a 1-u-chip FET is
designed for the 7-14-GHz band.

The second example is concerned with the design of the
output matching network of a packaged FET to cover the
4-8-GHz frequency band [3].

A. 1-p-Gate FET

The output of the chip FET can be modeled as an
open-circuited stub in parallel with a resistor as shown in

Fig. 7(a). The parameters of the model for measured s,, of
the FET, tabulated in Table VI for 7-14 GHz, are obtained
as

R, =4975Q
Zo, = 2362 Q
= § wavelength at 10.5 GHz. (42)

Now for o = 2 (octave bandwidth) and 7, = Z,, /R, =
0.47477, we can get an estimate from Table I corresponding
to the configuration of Fig. 4. For K = 0.95, 7, can be
realized exactly for a ripple factor between 0.25 and 0.36. It is
found by a simple interpolation that K = 0.95 with ¢2 = 0.3
will absorb the reactive constraint exactly. From (17), with
n=2and m = r = 1, the reflection function is given by

$11(2) = 1+ 0.339394 + 2.6683842 + 0.3392943 + A*
N 1+ 1.28754) + 3.288144% + 1.287547°% + )&

(43)

The synthesized circuit is given in Fig. 10 with its response
shown in Fig. 11.

B. Packaged FET

The output of the packaged FET can be modeled with the
configuration shown in Fig. 7(b). The element values for this
model for the measured s,, of the FET, tabulated in Table
VII for the 4-8-GHz band, are obtained as

R, =139.12Q
Zoy = 10752 Q
Z02 = 2316 Q

| = { wavelength at 6 GHz (44)

For a =2, 7, = 0.77286, and 1, = 0.16647, an estimate
can be obtained from either Table II or Table III. From
Table II, for the Butterworth function, we see that K
between 0.95 and 1.0 and &2 approximately equal to 0.09 will
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TABLE VII
MEASURED s,, OF A PACKAGED GaAs FET
S22
PREQ (GHz
Q (GHz) MAG ANGLE
4.0 0.563 - 42.4
4.5 0.520 - 47.9
5.0 0.485 -55.8
5.5 0.457 - 64.0
6.0 0.412 - 74,7
6.5 0.370 - 83.3
7.0 0.320 ~95.9
7.5 0.266 -109.9
8.0 0.244 ~132.0
it a
\ Zo2 Zo3 A
. :
1 3
Rg Zot : Zow ! Ry
|
| |
FET H !
bt e mm e e m e e
MATCHING NETWORK
Rg =497.5Q
Z01=236.29
Z02=158,42
Zo3=3113 @
Z0.=46 309
R, =5698¢

Q:l/s wavelength at 105 GHz

Fig. 10. Output matching network for a chip FET amplifier mn the
7-14-GHz range using the Chebyshev function.

absorb 7, exactly and satisty t, with inequality. It is found by
interpolation that
K =098
e2 =0.08 (45)

will exactly absorb 7, and satisfy 7,. The resulting reflection
function is given by

sua) = 1+ 1.023372 + 24680912 + 0.9675613 + A*
W™ 1 + 3.45815 + 52016422 + 2.5304743 + 1*°

(46)

The synthesized circuit is shown in Fig. 12 with its response
in Fig. 13.

In the same manner, from Table III, we can obtain the
Chebyshev function parameters. The results are

K =095
¢ =0.01

(47)

and

1+ 1.25754A + 4766774 + 3313954 + 4.766772* + 1.257542° + A8

oo
A~ « /x\
/x \x /x yd \\
—10L
\x\x X/x
X ~——" X
_ 20k
[y
T .30
Z
&
-40F ——X— response of Figure 2(a) (R =5698%)
70 80 a5 09 Tio 1y T30 %o
FREQUENCY (GHz)
Fig. 11. Output circuit response of a chip FET amplifier.
| i
! |
' {47.72 - 2316 !
i !
t I
1 '
i 1
¢ 1
|
13912 g 37.67
1
i
1
(a) i
1
i
I
{(b)
MATCHING NETWORK
/( = V8 wavelength at 6GHz
Fig. 12. Output matching network for a packaged FET in the 4-8-GHz

range using the Butterworth function. (a) Original circuit. {b) Series
shunted stub approximated by an inductor.

00} o
e O g X Y
/x \O\ o—_— o —_)é>i?°
X
~10k
_ -20}
@
=
-4
<
© 30b
—x~— output response with R, =37672
-40F
—o~— output response with R, changed to 5000
40 50 80 70 80
FREQUENCY ({GHgz}
Fig. 13. Output circuit response of a packaged FET for the Butterworth

case corresponding to Fig. 12.

(48)

s110%) = 7773 808787 & 7.9207047 + 9.190224% + 7.920704% + 2.808784% + A°"
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Fig. 14. O_utput matching network for a packaged FET in the 4-8-GHz
range using the Chebyshev function. (a) Original circuit. (b) Series stubs
approximated by lumped elements.
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X X
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20t
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<
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-40l
: . \ . . A A .
40 50 60 70 80
FREQUENCY (GHz)
Fig. 15. Output circuit response of a packaged FET for the Chebyshev

case corresponding to Fig. 14.

The synthesized circuit is shown in Fig. 14 in which the
distributed to lumped approximations are also used due to
practical realizability requirements. The output circuit re-
sponse is shown in Fig. 15.

The matching of the input circuits of the transistors with
required approximated tapered magnitude bandpass func-
tions may be easily accomplished using one-cighth wave-
length line structures [14], [15].

VI. CONCLUSIONS AND REMARKS

Characteristic functions to realize a new class of pro-
totype transmission-line structures have been derived for
both the Butterworth and the Chebyshev approximations.
The new prototype is capable of reactance absorption and at
the same time is able to adjust resistor ratios in a certain
range due to shorted parallel stubs in the structure[9]. Since
the line lengths are one-eighth the wavelength at the center
of the band, it is possible to approximate open and shorted
stubs by lumped capacitors and inductors, respectively.

847

Designs are tabulated for certain configurations which are
useful in broad-band matching of GaAs FET amplifiers
[11-[3}

The gain-bandwidth restrictions are investigated for two
different reactive loads. The relations for two different
Chebyshev functions with required configurations are
compared with the optimal gain-bandwidth relations ob-
tained for idealized gain functions in the distributed domain.
The results can be applied, with minor modifications, to
broad-band matching of series open-circuited stubs and
series resonant circuits.
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